
Trajectory Adjustment for Nonprehensile

Manipulation using Latent Space of Trained

Sequence-to-Sequence Model

Kyo Kutsuzawa, Sho Sakaino, and Toshiaki Tsuji

This is an electronic version of an article published in Advanced Robotics
Vol. 33, No. 21, pp. 1144–1154, 2019
Advanced Roboticsis available online at: www.tandfonline.com/10.1080/01691864.2019.1673204;
10.1080/01691864.2019.1673204.

FULL PAPER

Trajectory Adjustment for Nonprehensile Manipulation using Latent Space

of Trained Sequence-to-Sequence Model

K. Kutsuzawaa,b∗, S. Sakainoc,d, and T. Tsujia

aGraduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Sakura-ku,

Saitama, Japan; bJSPS Research Fellow (DC2); cGraduate School of Systems and Information

Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
dJST PRESTO

(Received 00 Month 201X; accepted 00 Month 201X)

When robots are used to manipulate objects in various ways, they often have to consider the dynamic
constraint. Machine learning is a good candidate for such complex trajectory planning problems.
However, it sometimes does not satisfy the task objectives due to a change in the objective or a lack of
guarantee that the objective functions will be satisfied. To overcome this issue, we applied a method
of trajectory deformation by using sequence-to-sequence (seq2seq) models. We propose a method of
adjusting the generated trajectories, by utilizing the architecture of seq2seq models. The proposed
method optimizes the latent variables of the seq2seq models instead of the trajectories to minimize
the given objective functions. The verification results show that the use of latent variables can obtain
the desired trajectories faster than direct optimization of the trajectories.

Keywords: nonprehensile manipulation; sequence-to-sequence model; latent variable; neural
network; motion optimization

1. Introduction

As robots are increasingly used in a wide range of applications, they will often have to consider the
dynamic constraint when they manipulate objects. For example, in the task of moving objects on
a spatula[1, 2], the robots should apply appropriate acceleration to avoid dropping the objects.
In the task of sliding ingredients on a plate[3, 4], the robots have to get the ingredients to
move between the static friction and dynamic friction. For such kind of manipulation, called
nonprehensile manipulation[5], the robots should satisfy the dynamic constraint while achieving
the other operation goals such as reaching the final position, fitting the motions within the range
of motion, and limiting the velocity within the limitations.
It is generally difficult to generate motions that satisfy the dynamic constraint as well as

accomplish the operational goals. Kinodynamic motion planning[6], which considers the dy-
namics and kinematics simultaneously, is a popular approach. Conventional studies have used
various trajectory planning methods such as Rapidly-exploring Random Tree (RRT)[7, 8] and
Model Predictive Control (MPC)[2]. Lertkultanon et al.[8] realized a robot capable of manipu-
lating objects on a plate without dropping and avoiding obstacles by using Admissible Velocity
Propagation-RRT. Woodruff et al. [9] realized an object manipulation task that involved rolling,
sliding, and throwing. Such exploration methods, however, increase the calculation costs as the
difficulty of the tasks increase. In addition, these methods tend to be difficult to apply to complex

∗Corresponding author. Email: k.kutsuzawa.430@ms.saitama-u.ac.jp

1

tasks such as contact motions.
To avoid the increase in complexity of trajectory optimization, approaches based on machine

learning, especially neural networks, have been researched recently. Levine et al. [10] realized
various assembly tasks including tight-fitting contact by using neural networks. Yuan et al. [11]
realized a planar pushing task with obstacle avoidance by using reinforcement learning. Mor-
datch et al. [12] realized neural network-based feedback controllers that generate near-optimal
walking motions. In addition, neural networks can also be used to reduce computational costs.
Although neural networks require high computational costs during training, the trained models
are computationally less expensive than most trajectory optimization methods. Zhang et al. [13]
showed that neural networks trained by MPC can reduce the computation cost. Similarly, Furuta
et al. [14] realized neural networks for dynamic manipulation by copying MPC, and confirmed
that neural networks can generate appropriate trajectories faster than the original MPC.
Trajectory generation methods using machine learning, however, sometimes do not satisfy the

task objectives. Since learning-based methods do not guarantee that the objective function will
be satisfied, they sometimes generate trajectories beyond the dynamic constraint. Moreover, the
objective changes when new obstacles appear or when the goal of the task changes. In such cases,
we need to adjust the generated trajectories for the new objectives.
For adjusting the generated trajectories, it will be inefficient to optimize the trajectories di-

rectly, since the kinodynamic motion planning problem is difficult to solve. Although there have
been several researches on trajectory adjustment[15–18], all of them used domain-specific al-
gorithms. On the other hand, we use intermediate representations of trained neural networks,
which are also called latent representations or latent variables. Since the latent representations
express task-specific features in a low-dimensional space, they are expected to be optimized by
simple methods. The effectiveness of the use of latent variables is demonstrated in the field of
computer vision. The use of gradient descent methods to generate images resulted in unrealis-
tic images[19], whereas the use of gradient descent methods to latent representations of image
classification models could obtain realistic images[20]. Recently, some studies used latent rep-
resentations of motions in the field of reinforcement learning[21–23]. Our proposed method, on
the other hand, can optimize the latent representations directly by using gradient descent meth-
ods for various objective functions. Moreover, the proposed method is capable of extending the
performance and application of the trajectory deformation models, which enables it to perform
dynamic manipulation even by itself.
This paper proposes a method of adjusting the trajectories generated by neural networks by

using the latent representations of the trajectories. As neural networks for trajectory genera-
tion via latent representations, we use sequence-to-sequence (seq2seq) models[24–28]. Seq2seq
models can be used to generate trajectories considering the dynamics by deforming the given
trajectories[26, 28]. By optimizing their latent variables, the solution can be obtained in fewer
iterations than that required when optimizing the trajectories directly, as shown in the simula-
tion results. This method can be used for various objective functions; it is applicable when the
objective functions are differentiable. In addition, the latent variables can be optimized by using
the simplest gradient descent method.
The rest of this paper is organized into the following sections. Section 2 introduces seq2seq

models and their application to trajectory deformation. Section 3 explains the proposed method.
Section 4 describes the simulation that is conducted to evaluate the proposed method. Section 5
describes an experiment based on the proposed method. Finally, Section 6 concludes this paper.

2. Background

2.1 Sequence-to-sequence model

Sequence-to-sequence (seq2seq) models[24, 25] are neural networks used for time-series conver-
sion. Seq2seq models are used in a wide variety of applications such as natural language transla-

2

tion, text summarization[29], and forming associations between language commands and robot
motions[30]. A seq2seq model consists of two recurrent neural networks (RNNs) as illustrated
in Fig. 1. The input side RNN is called encoder, while the output side RNN is called decoder.
Seq2seq models have almost no limitation for the construction of a time-series.
Here, we explain the conversion process of seq2seq models in machine translation. First, the

encoder receives a sentence in the source language word by word. After the encoder receives the
final word, the encoder generates a latent variable. Then, the decoder receives the latent variable
and the first word, and generates the next word in the target language. Usually, the special token
“BOS,” which indicates the beginning of the sentence, is used as the first word. The decoder
repeats the process of receiving a word and generating the next word. The generation process
of the decoder is completed by generating a special token “EOS,” which indicates the end of
the sentence. The training progresses in a manner of end-to-end learning; the accuracy of the
generated sentence is evaluated and backpropagated to the entire seq2seq model.
One feature of seq2seq models is that the time-series conversion progresses via latent repre-

sentations of the time-series. The latent representations are considered to represent the features
of the time-series for the trained tasks. For example, in natural language translation, it is con-
sidered that the latent representation represents the meaning of the sentence [25]. This can be
utilized for translating between multiple languages [31] and generating a sentence that has an
intermidiate meaning between two sentences[32].

2.2 Seq2seq model for trajectory deformation

Seq2seq models can also be applied to nonprehensile manipulation[26–28]. These seq2seq mod-
els deform the given trajectories to satisfy the dynamic constraint of the task. They can be
applied even if the task includes discontinuous contact models, which are difficult to handle
analytically[27, 28].
An overview of the seq2seq model is shown in Fig. 2. This model receives an arbitrary trajec-

tory,

Xin = (xin[0], · · · ,xin[K − 1]), (1)

where xin[k] indicates a state variable at the k-th sample, and K is the length of the sequence.
The encoder converts Xin into a latent variable z. Then, the decoder receives z and generates a
sequence of control inputs for a robot as follows:

Uout = (uout[0], · · · ,uout[K − 1],σuout
[0], · · · ,σuout

[K − 1]). (2)

editedpwhereHere, uout[k] and σuout
[k] indicate a control input for the robot and its covariance

matrix at the k-th sample, respectively. The covariance matrices are used only for training [33].
By inputting Uout into the physics model, we obtain a deformed trajectory

Xout = (xout[0], · · · ,xout[K − 1],σxout
[0], · · · ,σxout

[K − 1]). (3)

Here, xout[k] and σxout
[k] indicate a state variable and its covariance matrix for the output

sequence at the k-th sample, respectively.
The training objective is to deform the given trajectories in such a way that they satisfy the

dynamic constraint while retaining the original shapes. The training procedure is summarized
as follows; the details are explained in [26]. The model is trained so as to minimize the objective
function L for the input sequence Xin and output sequences Xout and Uout:

L(Xout, Uout, Xin) = L1(Xout, Xin) + αL2(Xout, Uout), (4)

3

(I, am, a, student)

(Je, suis, un, étudiant)

Encoder

Decoder

Latent
variable

Figure 1. Sequence-to-sequence model. This figure shows an example of machine translation from an English sentence into
a French sentence. The encoder receives the source sentence word by word and generates a latent variable z. The decoder
receives the latent variable z and generates the target sentence word by word.

Encoder Decoder

Robot and
Environment

Latent
variable

Figure 2. Seq2seq model for trajectory deformation. The encoder receives the original trajectory and generates a latent
variable z. The decoder receives the latent variable z and generates control inputs. By inputting the control inputs into the
robot, a deformed trajectory is obtained.

Here, L1 indicates the reproduction loss between Xin and Xout, and is expressed as follows:

L1(Xout, Xin) = −
K−1∑
k=0

log p(Dxin[k]|Dxout[k],Dσxout
[k]D⊤). (5)

Here, D is a constant diagonal matrix that is used to align the scales between different units such
as meters and radians, and p(x|µ, σ) indicates the probability of x under a Gaussian distribution
with mean µ and covariance σ. L2 is the penalty for the case in which the output motion exceeds
the dynamic constraint, and α is the weight coefficient. If α is large enough, L2 converges to zero
while L1 decreases. Finally, the model outputs a trajectory that satisfies the dynamic constraint
while retaining the original shape of the input trajecotry.

3. Method

3.1 Issue to be addressed

In the trajectory deformation using seq2seq models, the training objective is to minimize the
amount of deformation and retain the dynamic constraint. However, we often have different
objectives when using trained models. For example, users often desire to reach certain end
positions. In such cases, the objective is to minimize the error at the end of the trajectories,
while the remaining trajectories can be ignored. For example, the velocity of the deformed
trajectories may be larger than what the robots can follow accurately. In such cases, we should
decrease the velocity slightly while satisfying the dynamic constraint.
Therefore, users often have to adjust the deformed trajectories for the given objective according

to the situation. In this section, we propose a method of adjusting the deformed trajectories by
utilizing the architecture of seq2seq models.

3.2 Optimization of the latent variable

The most straight-forward approach is to optimize the trajectories directly with the given ob-
jective functions. There have been many studies on trajectory adjustment[15–18]; however, this

4

approach may be difficult because of the large number of dimensions.
Instead of utilizing this approach, we aim to use latent variables for optimization. As explained

in Section 2.1, the latent variables represent the features of the trained time-series in a low-
dimensional space. In this task, the latent variables are expected to represent the trajectories
that satisfy the dynamic constraint. Therefore, we expect that the use of latent variables are
beneficial to such adjustment tasks. In this paper, we aim to adjust the latent variables instead
of the trajectories.
To optimize the latent variables, we need to quantify the relationship between the latent vari-

ables and the deformed trajectories. This relationship is non-obvious; however, we can associate
their small displacements using Jacobian matrices. Since backpropagation can be applied to the
trained decoder, the derivative function ∂Uout

∂z can be obtained. Therefore, we can obtain the
gradient of the objective function J with respect to the latent variables z as follows:

∂

∂z
J(Xout, Uout) =

∂Uout

∂z

∂

∂Uout
J(Xout, Uout). (6)

Finally, we can optimize the objective function with gradient-based optimization methods such
as gradient descent as follows:

z ← z − η
∂

∂z
J(Xout, Uout), (7)

where η is the learning coefficient.
The objective functions J(Xout, Uout) usually differ from the loss function used in the training

of seq2seq models. Although the changes in the objective functions between training and testing
generally cause poor performance, the proposed method is expected to work due to the difference
in optimization targets; the training of seq2seq models optimizes their connection weights, while
the proposed method optimizes the latent variables. Besides, the proposed method requires that
the latent space represents various motions satisfying the dynamic constraint, which can be
accomplished by training with various input trajectories. Thus, the proposed method works in
various objective functions as long as the dynamic constraint is the same and the seq2seq models
are trained with various trajectories.
The proposed method has another advantage; thanks to the optimization of the latent space,

it is considered to be robust against the hyperparameters of the seq2seq models. Even if the
seq2seq models cannot achieve the minimum training loss due to the hyperparameters, such
small performance changes can be relieved by iterating the optimization steps in (7).

3.3 Optimization Procedure

The proposed method progresses as follows:

step 1 Prepare an original trajectory Xin.
step 2 Input Xin to the encoder and obtain z.
step 3 Generate trajectories Xout and Uout from z.
step 4 Calculate the objective function J(Xout, Uout).
step 5 Calculate the gradient ∂

∂zJ(Xout, Uout) by backpropagation as in (6).
step 6 Update z by using (7).
step 7 Repeat 3–6 until convergence.

Finally, we obtain an optimized z and its corresponding trajectory Xout. An overview of this
procedure is illustrated in Fig. 3.

5

Physics model

Forward calculation

Backward calculation

Acceleration State vectors

Objective function

Trained
decoder

Gradient

Latent
variable

Figure 3. Overview of the proposed method. Top: the forward calculation graph. Bottom: the backward calculation graph.

4. Simulation

4.1 Physics model

In this paper, we consider the task of turning over pancakes with a spatula, which is based on
planar physics. The overview of the physics model is illustrated in Fig. 4. A pancake is placed
on the spatula, and the pancake is manipulated without slipping or dropping by moving the
spatula.
Let the state variable at the k-th sample be x[k], and let the acceleration input to the spatula

at the k-th sample be u[k]. Then, the state equation of the spatula is expressed as follows:

x[k + 1] = Ax[k] +Bu[k]. (8)

The state variable x[k], the acceleration input u[k], and matrices A and B are defined as follows:

x[k] = [y[k], z[k], θ[k], vy[k], vz[k], vθ[k]]
⊤ , (9)

u[k] = [ay[k], az[k], aθ[k]]
⊤ , (10)

A =

[
I3 ∆tI3
O3 I3

]
, (11)

B =

[
∆t2

2 I3
∆tI3

]
. (12)

Here, y[k] and z[k] indicate the position of the spatula and θ[k] is the attitude of the spatula.
v•[k] and a•[k] are the velocity and the acceleration, respectively. I3 ∈ R3×3 and O3 ∈ R3×3

denote the identity matrix and zero matrix, respectively. ∆t is the sampling interval; we set
∆t = 1 ms. In addition, we represent the position and velocity of the spatula, p[k] and ṗ[k],
respectively, as follows:

p[k] = [y[k], z[k], θ[k]]⊤ , (13)

ṗ[k] = [vy[k], vz[k], vθ[k]]
⊤ . (14)

The pancake is fixed to the spatula while the dynamic constraint is maintained. The condition
of the dynamic constraint is expressed as follows:

|ϕ[k]| < arctanµmax. (15)

Here, µmax is the static friction coefficient; we let µmax = 1.0. ϕ[k] denote the argument angle of

6

the resultant force of the inertial force and the gravity with respect to the spatula as follows:

ϕ[k] ≡ arg (g − u[k])− θ[k]. (16)

Here, arg indicates the angle of vectors on the y-z plane, g = [0,−9.8, 0]⊤ is the gravity, and
θ[k] is the inclination angle of the spatula.

4.2 Implementation of seq2seq model

The training procedure and the model architecture followed those in the previous work [26];
however we used two layers of LSTMs with 64 units as the encoder and the decoder. Thus, the
latent variable z has 64× 2 = 128 dimensions. It is more than 10 times smaller than that of the
trajectories; as explained in Section 4.3.1, each trajectory has 3× 500 = 1500 dimensions.
We used 1638400 input trajectories to train the seq2seq model. These trajectories are generated

in the simulation.

4.3 Adjusting trajectories to reach the given end positions

We generated trajectories for reaching the given end positions by using the trained seq2seq
model.

4.3.1 Objective function

To evaluate the objective, we designed the following objective function:

J1(Xout, Uout) ≡ ∥D(p[K − 1]− pend)∥2 + αfdyn(Xout, Uout), (17)

where, pend denotes the desired end position, and α is a constant value; here, we set α = 1.
D = diag[1, 1, 0.1] is a scaling parameter between the position [m] and the attitude [rad]. fdyn
denotes the penalty term for the dynamic constraint, which is defined as follows:

fdyn(Xout, Uout) ≡
K−1∑
k=0

max(|ϕ[k]| − arctanµmax, 0). (18)

Here, max indicates the maximum function. This penalty increases when (15) is not satisfied.
The length of a sequence K is set to K = 500.
The above objective function includes fdyn, the same penalty term as L2 in (4). Even if the

seq2seq models are trained correctly, we need such a penalty to satisfy the dynamic constraint.
The reason is that not all points in the latent space are associated with valid trajectories. Latent
variables work correctly only if the encoder generated them during training; otherwise, there
is no guarantee that these are associated with valid trajectories. Even though such valid latent
variables have a dense and continuous distribution in a certain region, we can find invalid latent
variables that were not generated by the encoder during optimization.
We used various patterns of end positions pend = [yend, zend, θend] from the following range:

−0.1 m ≤ yend ≤ 0.1 m, (19)

−0.1 m ≤ zend ≤ 0.1 m, (20)

−π rad ≤ θend ≤ π rad. (21)

We sampled three points at equal intervals from each axis. In total, 27 points of end positions
were used.

7

4.3.2 Original trajectories

As the inputs to the seq2seq model, we prepared trajectories satisfying the following objective
function:

Ĵ1(Xout, Uout) ≡ ∥D(p[K − 1]− pend)∥2 (22)

This is the first term of (17). Since this objective function considers only the kinematics, it is
easy to design. We used S-curve acceleration/deceleration trajectories from the initial position
to the end position.

4.3.3 Results

We minimized the objective function J1 by using the trained seq2seq model. We compared the
following three methods:

case 1 Updating the latent variable z starting with the encoder result (i.e., the proposed
method).

case 2 Updating the latent variable z starting with a random value.
case 3 Updating the output trajectory of the decoder, Uout, starting with the decoder result.

The comparison between case 1 and case 3 shows that optimization of the latent variables is
better than the optimization of the trajectories. Case 2 can verify whether the use of decoder
alone can achieve the objective, since it does not use the encoder. In case 2, the initial value of
the latent variable z0 was sampled from the Gaussian distribution with mean 0 and variance I.
In general, the distribution of the latent variables is not a standard Gaussian distribution.

The actual distribution may be complex and is hard to identify. Therefore, in case 2, we used
the standard Gaussian distribution. Even though we can extend seq2seq models to specify the
distribution of the latent variables [32], such models often fail to learn various trajectories.
The progress of the objective function values is shown in Fig. 5. Here, we set the learning

coefficient to η = 200, 200, and 1000 for case 1, case 2, and case 3, respectively. In case 1,
the objective function value decreased quickly. The values decreased below 10−3 after the 5th
update on average. In case 2 also, the values decreased. However, the initial loss was larger
than that in the other cases. In addition, the convergence speed was slower than that of case 1.
The reason can be considered that the initial latent variables were far from the optimal one. In
case 3, the objective function value hardly decreased. Here, 10 updates took 12.1 s (i.e., 1.21
s/update) in case 1 and case 2, and 10.5 s (i.e., 1.05 s/update) in case 3, with Intel Core
i7-8700. Although the back-propagation path includes the decoder in case 1 and case 2, the
calculation time was only 15 % longer. Although the calculation times were longer than those of
the trained neural networks, it is notable that this method did not require additional training
for the novel objective. Therefore, considering the cost of training new models due to changes
in the objective, the proposed method is computationally efficient.
The trajectories obtained after 100 updates are shown in Figs. 6, 7, and 8. All the trajecto-

ries reached the given end position with little errors. In addition, the dynamic constraint was
maintained in all cases. The root mean square errors (RMSEs) of the end positions are shown in
Fig. 9. The RMSEs in case 1 were 0.27 mm and 0.30 deg on average. These results were compa-
rable to the neural networks in [14], which were trained with thousands of training samples and
100000 iterations. On the other hand, case 2 and case 3 resulted in larger errors, especially
in the attitude. Since the turning-over task, which is performed by tilting the spatula largely,
is difficult, it is considered that the optimized trajectories result in large errors in the attitude
unless using a low-dimensional latent space and starting from good initial values.

8

Pancake

Spatula

Figure 4. Physics model.

2 4 6 8 10
Iteration

10 3

10 2

10 1

Va
lu

e

case 1
case 2
case 3

Figure 5. Progress of the objective functions. The lines indicate the mean losses of 27 trials with various end positions.
The filled areas indicate their 95 % confident levels.

5. Experiment

5.1 Setup of the robot

We used a six degrees of freedom manipulator “MOTOMAN-MH3F,” supplied by Yaskawa
Electric. A spatula was equipped at the tip of the manipulator. Instead of a pancake, a rubber
plate was placed on the spatula.
A P-D controller with disturbance observer (DOB) [34] is implemented to control the tip of

the spatula position and attitude. The control system is illustrated in Fig. 10. Here, q indicates
the six-dimensional position/attitude of the spatula in the Cartesian coordinate system. The
control command, qcmd, was calculated by the position generated by the seq2seq models, p[k] =

[y[k], z[k], θ[k]]⊤, as follows:

qcmd =
[
0.5, y[k], z[k] + 0.35, θ[k],

π

2
, 0
]⊤

. (23)

Here, we did not use the generated acceleration u[k] directly to avoid drift errors, which cause
large errors in the final positions. Even though the control commands were the position and
attitude, the DOB forced the robot to follow the acceleration reference, q̈ref , in a frequency
range lower than the cutoff frequency gDOB. θ and τ indicate the joint angles and joint torques,
respectively, •res and •ref indicate response values and reference values, respectively, and τ̂ dis in-
dicates the disturbance torque estimated by the DOB. Kp = diag[Kpp,Kpp,Kpp,Kpr,Kpr,Kpr],
Kv = diag[Kvp,Kvp,Kvp,Kvr,Kvr,Kvr], J , and M indicate the proportional gain, derivative
gain, Jacobian matrix, and mass matrix, respectively. The proportional position gain Kpp, pro-
portional attitude gain Kpr, derivative position gain Kvp, and derivative attitude gain Kvr were
450, 700, 60, and 90, respectively. The cutoff frequency of the disturbance observer gDOB was
set to 2.0 Hz. The control period was 1 ms.

9

0 100 200 300 400 500
Time [ms]

0.1

0.0

0.1

0.2

Po
si

ti
o
n
 [

m
]

0 100 200 300 400 500
Time [ms]

3

2

1

0

A
tt

it
u
d
e
 [

ra
d
]

y

z
target

target

(a) Time-position

0.10 0.05 0.00 0.05 0.10
y

0.10

0.05

0.00

0.05

0.10

0.15

0.20

z

target
trajectory

(b) Trajectories in the y-z plane. The x-marks indicate the
target positions.

0 100 200 300 400 500

0.75

0.50

0.25

0.00

0.25

0.50

0.75

[r
a
d
]

constraint

Time [ms]

(c) Angle of the contact force of the pancake with respect
to the spatula. The dynamic constraint is satisfied in the
blue area.

Figure 6. Trajectories obtained after optimization by the proposed method when the final attitude is −π.

5.2 Trajectory

While executing the turning over motions, the manipulator may fail in the task if the velocity
is too large. Therefore, we should adjust the trajectories to reduce the velocity. To obtain such

10

0 100 200 300 400 500
Time [ms]

0.10

0.05

0.00

0.05

0.10

Po
si

ti
o
n
 [

m
]

0 100 200 300 400 500
Time [ms]

0.1

0.0

0.1

0.2

A
tt

it
u
d
e
 [

ra
d
]

y

z
target

target

(a) Time-position

0.10 0.05 0.00 0.05 0.10
y

0.10

0.05

0.00

0.05

0.10

z

target
trajectory

(b) Trajectories in the y-z plane. The x-marks indicate the
target positions.

0 100 200 300 400 500

0.75

Time [ms]

0.50

0.25

0.00

0.25

0.50

0.75

[r
a
d
]

constraint

(c) Angle of the contact force of the pancake with respect
to the spatula. The dynamic constraint is satisfied in the
blue area.

Figure 7. Trajectories obtained after optimization by the proposed method when the final attitude is 0.

low-velocity trajectories, the following objective function is used:

J2(Xout, Uout) ≡max
(√

y2[K − 1] + z2[K − 1]− plim, 0
)

+ 0.1max (|θ[K − 1]− θend| − θlim, 0)

+ αfdyn(Xout, Uout) +
β

K

K−1∑
k=0

∥max(0,D(abs(ṗ[k])− vlim))∥2. (24)

11

0 100 200 300 400 500
Time [ms]

0.1

0.0

0.1

0.2

Po
si

ti
o
n
 [

m
]

y

z

0 100 200 300 400 500
Time [ms]

0

1

2

3

A
tt

it
u
d
e
 [

ra
d
]

target

target

(a) Time-position

0.10 0.05 0.00 0.05 0.10
y

0.10

0.05

0.00

0.05

0.10

0.15

0.20

z

target
trajectory

(b) Trajectories in the y-z plane. The x-marks indicate the
target positions.

0 100 200 300 400 500

0.75

0.50

0.25

0.00

0.25

0.50

0.75

[r
a
d
]

constraint

Time [ms]

(c) Angle of the contact force of the pancake with respect
to the spatula. The dynamic constraint is satisfied in the
blue area.

Figure 8. Trajectories obtained after optimization by the proposed method when the final attitude is π.

Here, abs indicates the element-wise absolute value function. θend, plim, and θlim indicate the
desired end attitude, desired range of the end position, and attitude, respectively; we set these
as −3

4π rad, 0.2 m, and 0.5 rad, respectively. α and β are constant values; here we set α = 1 and

β = 0.01. vlim indicates the desired range of the velocity; we set vlim = [1.5, 1.5, 4.5]⊤. In this
objective function, the first two terms indicate the positional constraint. These terms increases
when the errors exceed the given range. The final term indicates the velocity penalty. This term
increase when the velocity exceeds vlim. For optimization, the learning coefficient was set to

12

case 1 case 2 case 30.00

0.05

0.10

RM
SE

 o
f t

he
 e

nd
 p

os
iti

on
 [m

]

case 1 case 2 case 30.0

0.5

1.0

RM
SE

 o
f t

he
 e

nd
 a

tti
tu

de
 [r

ad
]

Figure 9. Root mean square errors (RMSEs) of the end positions. The error bars indicate their 95 % confident levels.

Manipulator

DOB

Forward
Kinematics

Figure 10. Control system.

η = 100.
The input trajectory to the seq2seq model had a uniform linear motion with constant velocity

from the initial position to the end position pend =
[
0, 0,−3

4π
]⊤

.

5.3 Result

The optimization results in the 0th, 10th and 20th iterations are shown in Fig. 11. Before
optimization (i.e., the 0th iteration), the velocity was larger than 2 m/s and 2π rad/s, and the
dynamic constraint was not maintained. As the update of the latent variable progressed, the
velocity and ϕ decreased. Finally, a trajectory with a lower velocity was obtained.
The final trajectory at the 20th iteration was executed by the manipulator. The experimental

result is shown in Fig. 12. The motion started from 25 s and lasted 0.5 s. After the turning
over motion, a constant deceleration motion with 0.1 s was added to avoid large deceleration
in the command trajectory. Although there remained some control deviations, the manipulator
succeeded in the turning over motion as shown in Fig. 13.

6. Conclusion

Trajectory generation using neural networks can deal with complex tasks such as kinodynamic
motion planning, but sometimes they fail to achieve the objectives accurately. Therefore, adjust-
ment of the generated trajectories is necessary. In this paper, we proposed a method of adjusting
the trajectories generated by seq2seq models for trajectory deformation. Seq2seq models can con-
vert trajectories to satisfy dynamic constraints via latent variables representing the features of
the trajectories. The proposed method optimizes the latent variables instead of trajectories to

13

0 200 400
Time [ms]

0.3

0.2

0.1

0.0

0.1

Po
si

ti
o
n
 [

m
]

y(0 epoch)
z(0 epoch)
y(10 epoch)
z(10 epoch)
y(20 epoch)
z(20 epoch)

0 200 400
Time [ms]

2

1

0

A
tt

it
u
d
e
 [

ra
d
]

(0 epoch)
(10 epoch)
(20 epoch)

(a) Time-position

0 200 400
Time [ms]

2

1

0

V
e
lo

ci
ty

 [
m

/s
]

vy(0 epoch)

vz(0 epoch)
vy(10 epoch)

vz(10 epoch)
vy(20 epoch)

vz(20 epoch)

0 200 400
Time [ms]

6

4

2

0

A
n
g
u
la

r
ve

lo
ci

ty
 [

ra
d
/s

]

v (0 epoch)
v (10 epoch)
v (20 epoch)

(b) Time-velocity

0.04 0.02 0.00 0.02
y

0.3

0.2

0.1

0.0

0.1

z

0 epoch
10 epoch
20 epoch

(c) Trajectories in the y-z plane.

0 200 400

0.5

0.0

0.5

1.0
[r

a
d
]

0 epoch
10 epoch
20 epoch

Time [ms]

(d) Angle of the contact force of the pancake with respect

to the spatula. The dynamic constraint is satisfied in the

blue area.

Figure 11. Trajectories obtained after optimization with J2.

minimize the given objective functions. Through simulation, we verified that the use of latent
variables can obtain the desired trajectories faster than that when optimizing the trajectories
directly. In addition, it was confirmed that the trajectories adjusted by the proposed method
can be executed by an actual manipulator.
We expect that the proposed approach, which considers the latent variables of trajectory

generation models that can deal with task-specific constraints, is effective for complex tasks that
consist of various constraints and objectives.

Acknowledgement

This work was supported by Grant-in-Aid for JSPS Research Fellow, No. 18J14272.

14

24.75 25.00 25.25 25.50 25.75 26.00
Time [sec]

0.0

0.2

0.4

Po
sit

io
n

[m
]

ycmd

zcmd

y
z

24.75 25.00 25.25 25.50 25.75 26.00
Time [sec]

2

1

0

At
tit

ud
e

[ra
d]

cmd

(a) Position and attitude.

0.15 0.10 0.05 0.00 0.05 0.10 0.15
y [m]

0.20

0.25

0.30

0.35

0.40

z [
m

]

command
response

(b) Trajectories in the y-z plane.

Figure 12. Trajectories obtained after optimization by the proposed method with pend1.

Figure 13. Snapshots of the turning over motion.

15

References

[1] Tsuji T, Ohkuma J, Sakaino S. Dynamic object manipulation considering contact condition of robot
with tool. IEEE Trans Ind Electron. 2016;63(3):1972–1980.

[2] Tsuji T, Kutsuzawa K, Sakaino S. Optimized Trajectory Generation based on Model Predictive
Control for Turning Over Pancakes. IEEJ J Ind Appl. 2018;7(1):22–28.

[3] Higashimori M, Utsumi K, Omoto Y, Kaneko M. Dynamic Manipulation Inspired by the Handling
of a Pizza Peel. IEEE Trans Robot. 2009;25(4):829–838.

[4] Vose TH, Umbanhowar P, Lynch KM. Sliding manipulation of rigid bodies on a controlled 6-DoF
plate. Int J Rob Res. 2012;31(7):819–838.

[5] Lynch KM. Nonprehensile Robotic Manipulation : Controllability and Planning. [Ph.D. thesis].
Carnegie Mellon University. 1996.

[6] Donald B, Xavier P, Canny J, Reif J. Kinodynamic Motion Planning. J ACM. 1993;40(5):1048–1066.
[7] LaValle SM, Kuffner JJ. Randomized kinodynamic planning. Int J Rob Res. 2001;20(5):378–400.
[8] Lertkultanon P, Pham QC. Dynamic non-prehensile object transportation. In: Proc. int. conf. control

autom. robot. vis.. 2014. p. 1392–1397.
[9] Woodruff JZ, Lynch KM. Planning and control for dynamic, nonprehensile, and hybrid manipulation

tasks. In: Proc. ieee int. conf. robot. autom.. 2017. p. 4066–4073.
[10] Levine S, Wagener N, Abbeel P. Learning Contact-Rich Manipulation Skills with Guided Policy

Search. In: Proc. ieee int. conf. robot. autom.. 2015. p. 156–163.
[11] Yuan W, Stork JA, Kragic D, Wang MY, Hang K. Rearrangement with Nonprehensile Manipulation

Using Deep Reinforcement Learning. In: 2018 ieee int. conf. robot. autom.. 2018 mar. p. 270–277.
[12] Mordatch I, Lowrey K, Andrew G, Popovic Z, Todorov E. Interactive Control of Diverse Complex

Characters with Neural Networks. In: Adv. neural inf. process. syst.. 2015. p. 1–8.
[13] Zhang T, Kahn G, Levine S, Abbeel P. Learning Deep Control Policies for Autonomous Aerial

Vehicles with MPC-Guided Policy Search. 2016 IEEE Int Conf Robot Autom. 2016;:528–535.
[14] Furuta D, Kutsuzawa K, Okamoto T, Sakaino S, Tsuji T. Model Predictive Control based Deep

Neural Network for Dynamic Manipulation. In: Proc. annu. conf. ieee ind. electron. soc.. 2017. p.
5215–5220.

[15] Kurniawati H, Fraichard T. From path to trajectory deformation. In: Proc. ieee/rsj int. conf. intell.
robot. syst.. 2007. p. 159–164.

[16] Lamiraux F, Bonnafous D. Reactive trajectory deformation for nonholonomic systems: application
to mobile robots. In: Proc. ieee int. conf. robot. autom.. Vol. 3. 2002. p. 3099–3104.

[17] Nierhoff T, Hirche S. Fast trajectory replanning using Laplacian mesh optimization. In: Proc. int.
conf. control. autom. robot. vis.. 2012. p. 154–159.

[18] Pekarovskiy A, Nierhoff T, Schenek J, Nakamura Y, Hirche S, Buss M. Online deformation of optimal
trajectories for constrained nonprehensile manipulation. In: Proc. ieee/rsj int. conf. intell. robot. syst..
2015. p. 2481–2487.

[19] Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High Confidence Predictions
for Unrecognizable Images. In: Proc. ieee comput. vis. pattern recognit.. 2015 dec. p. 427–436.

[20] Nguyen A, Dosovitskiy A, Yosinski J, Brox T, Clune J. Synthesizing the preferred inputs for neurons
in neural networks via deep generator networks. In: Adv. neural inf. process. syst. 29. 2016. p. 1–9.

[21] Co-Reyes JD, Liu Y, Gupta A, Eysenbach B, Abbeel P, Levine S. Self-Consistent Trajectory Autoen-
coder: Hierarchical Reinforcement Learning with Trajectory Embeddings. In: Proc. 35th int. conf.
mach. learn.. Vol. 80. 2018 jun. p. 1009–1018. 1806.02813. Available from: http://arxiv.org/abs/
1806.02813.

[22] Pahic R, Loncarevic Z, Ude A, Nemec B, Gams A. User Feedback in Latent Space Robotic Skill
Learning. IEEE-RAS Int Conf Humanoid Robot. 2018;2018-Novem:791–797.

[23] Lynch C, Khansari M, Xiao T, Kumar V, Tompson J, Levine S, Sermanet P. Learning Latent Plans
from Play. arXiv Prepr arXiv190301973. 2019 mar;1903.01973. Available from: https://arxiv.
org/abs/1903.01973.

[24] Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning
phrase representations using RNN encoder-decoder for statistical machine translation. In: Proc. conf.
empir. methods nat. lang. process.. 2014. p. 1724–1734.

[25] Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. In: Proc. int.
conf. neural inf. process. syst.. 2014. p. 3104–3112.

[26] Kutsuzawa K, Sakaino S, Tsuji T. Sequence-to-Sequence Models for Trajectory Deformation of Dy-

16

namic Manipulation. In: Proc. annu. conf. ieee ind. electron. soc.. 2017. p. 5227–5232.
[27] Kutsuzawa K, Sakaino S, Tsuji T. Deformation of Contact Motion by Neural Networks to Adapt for

Various Environment Change. In: Proc. ieej int. work. sensing, actuation, motion control. optim..
2018.

[28] Kutsuzawa K, Sakaino S, Tsuji T. Sequence-to-Sequence Model for Trajectory Planning of Nonpre-
hensile Manipulation Including Contact Model. IEEE Robot Autom Lett. 2018;3(4):3606–3613.

[29] Nallapati R, Zhou B, dos Santos CN, Gülçehre Ç, Xiang B. Abstractive text summarization using
sequence-to-sequence RNNs and beyond. In: Proc. signll conf. comput. nat. lang. learn.. 2016. p.
280–290.

[30] Yamada T, Murata S, Arie H, Ogata T. Dynamical integration of language and behavior in a recur-
rent neural network for Human-Robot interaction. Front Neurorobot. 2016;10(5):1–17.

[31] Johnson M, Schuster M, Le QV, Krikun M, Wu Y, Chen Z, Thorat N, Viégas F, Wattenberg M,
Corrado G, Hughes M, Dean J. Google’s Multilingual Neural Machine Translation System: Enabling
Zero-Shot Translation. arXiv Prepr arXiv161104558. 2016 nov;.

[32] Bowman SR, Vilnis L, Vinyals O, Dai AM, Jozefowicz R, Bengio S. Generating Sentences from a
Continuous Space. arXiv Prepr arXiv151106349. 2015 nov;.

[33] Murata S, Yamashita Y, Arie H, Ogata T, Sugano S, Tani J. Learning to perceive the world as
probabilistic or deterministic via interaction with others: a neuro-robotics experiment. IEEE Trans
Neural Networks Learn Syst. 2015;28(4):830–848.

[34] Ohnishi K, Shibata M, Murakami T. Motion control for advanced mechatronics. IEEE/ASME Trans
Mechatronics. 1996;1(1):56–67.

17

